A Fast Algorithm for the Cyber 205 to Simulate the 3D Ising Model

Gyan Bhanot,¹ Dennis Duke,² and Román Salvador²

Received February 17, 1986; final April 22, 1986

We describe a computer program that performs the Metropolis algorithm for the 3D Ising model at a peak speed of 98 million spin updates per second on a 2-pipe CDC Cyber 205. This speed is achieved using the special vector capabilities of the Cyber 205 and multispin coding techniques.

KEY WORDS: Ising model, Monte Carlo method, multispin coding, vector computer.

INTRODUCTION

This paper describes a new way to implement the Metropolis et al.⁽¹⁾ algorithm for Monte Carlo simulations of statistical systems with a few discrete degrees of freedom per variable. We describe this algorithm as implemented on a CYBER 205 and for the 3D Ising model. However, as should become obvious, our method can also be used on other computers and for other systems.

Each spin update in the Metropolis algorithm involves comparing the exponential of the change in the action with a random number. Since generating a random number takes about 20 ns on the Cyber 205, the best that a normal implementation of the algorithm can achieve is 50 million updates per second. We describe a method that avoids the bottleneck of making a floating point comparison with a random number. (Another method to avoid this bottleneck was proposed in Ref. 2.) Our method, in brief, works as follows:

¹ Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306.

² Supercomputer Computations Research Institute and Department of Physics, Florida State University, Tallahassee, Florida 32306.

- 1. In our simulation, we use a variation of the multispin coding method⁽³⁾ in which a single word contains one spin from *n* different systems. In our case, *n* is the word length which for the CYBER 205, n = 64. Hence we are simultaneously working on 64 different lattices.
- 2. We code the necessary information about each random number into two bits.
- 3. Each bit pair is used exactly once for each of the 64 lattices.
- 4. We use only logical commands for the update. Thus, 64 spins are updated together.

This method gives an algorithm speed of 98 megaflips in a 2-pipe Cyber 205. The fastest implementation for the 3D Ising model we are aware of does 218 megaflips on a DAP computer. However, this implementation is for the special case of a $128 \times 128 \times 144$ lattice.⁽⁴⁾

Because of inherent Cyber 205 limitations on vector length, our current algorithm can only run on lattices of size up to 50^3 . To modify the code for larger lattices is easy. It involves slicing the lattice up into two dimensional planes and making the vector length equal half the number of spins in a plane. The algorithm currently achieves a speed of over 90 million spin updates per second for lattices of size greater than 14^3 on a 2-pipe Cyber 205. Our peak speed of 98 megaflips is achieved on a 20^3 lattice. We have used this program recently to reanalyze finite-size scaling for the 3D Ising model and compute the critical exponent γ to a few parts in a thousand.⁽⁵⁾

THE ALGORITHM

The Ising model is defined as a collection of spins on the sites of the lattice. The action (energy) of the system is given by

$$S(\{s\}) = -\sum_{i,\hat{\mu}} s_i s_{i+\hat{\mu}} \qquad (s = \pm 1)$$
(1a)

The spins s_i can have two possible values, ± 1 . The aim is to generate configurations of spins with joint probability distribution

$$Z = \sum_{\{s\}} e^{-\beta S(\{s\})}$$
(1b)

It is more convenient to store one spin per bit by using, in place of the variables s, the variables $\sigma = (1 - s)/2$, which take values 0 or 1. As a function of these variables, the action is

$$S(\{\sigma\}) = -\sum_{i,\hat{\mu}} (1 - 2x_{i,\hat{\mu}}) \qquad (x_{i,\hat{\mu}} = 0, 1)$$
(2a)

with

$$x_{i,\hat{\mu}} = XOR(\sigma_i, \sigma_{i+\hat{\mu}}) \qquad (\sigma = 0, 1)$$
(2b)

The change in the action on flipping the spin at site i is

$$\Delta S = S_{\text{final}} - S_{\text{initial}} = 12 - 4 \sum_{\pm \hat{\mu}} x_{i,\hat{\mu}}$$
(3)

where the sum goes over all neighbors of s_i . The Metropolis algorithm consists of the following

- 1. If ΔS is nonpositive the spin flip should be accepted.
- 2. Otherwise, it should be accepted with probability $e^{-\beta \Delta S}$.

We implement this by logical commands as follows:

Define three bit variables B3V, B2V, B1V initialized to 0, 0, 1, respectively. Add the six values of $x_{i,\mu}$ to the bits B3V, B2V, B1V, thinking of them as the third, second, and first bits of an integer. Note that this can be done with logical instructions since each $x_{i,\mu}$ is either 0 or 1. The seven final values of the set B3V, B2V, B1V are shown in Table I. Notice that when the spin flip is to be accepted B3V = 1. Using B3V as the acceptance criterion implements the first part of the Metropolis algorithm. If B3V is still zero after the additions, then we are dealing with the cases where $\sum_{i,\mu} x_{i,\mu}$ is 0, 1, or 2 and in this case, the spin should flip with probability $e^{-\beta dS}$. To do this, we define two additional bits D2V, D1V, called *demons* (*demon* variables similar to ours were first used by Creutz in the context of the microcanonical ensemble.⁽⁶⁾) which take the values (0, 1), (1, 0), and (1, 1) with probabilities p_{01} , p_{10} , and p_{11} given by

$$p_{01} = e^{-4\beta} - e^{-8\beta}$$

$$p_{10} = e^{-8\beta} - e^{-12\beta}$$

$$p_{11} = e^{-12\beta}$$
(4)

∆S	$\sum_{\pm \hat{\mu}} x_{i,\hat{\mu}}$	<i>B</i> 3	<i>B</i> 2	<i>B</i> 1
		0	0	0
12	0	0	0	1
8	1	0	1	0
4	2	0	1	1
0	3	1	0	0
-4	4	1	0	1
4	5	1	1	0
-12	6	1	1	1

Table I. Logical Implementation of the Metropolis Algorithm

The integer formed with D1V and D2V as the first and second bit is now added to the integer formed by B3V, B2V, and B1V. Once again, if B3V is unity, the flip is accepted. Notice that this will happen with probability $e^{-4\beta}$, $e^{-8\beta}$, and $e^{-12\beta}$ when ΔS is 4, 8, or 12, respectively. This implements the second part of the Metropolis algorithm.

Now we discuss the implementation of this algorithm on the Cyber 205. (The code is shown in Fig. 2.) As mentioned earlier, our program updates 64 different lattices simultaneously. Spins occupying the same coordinates on each of the 64 lattices are stored in the same word. The spins are labeled even/odd in a checkerboard pattern and updated in two steps: first all even spins are updated and then all the odd ones. The vector length of the pipelined arrays is half the total number of spins on a lattice. The variables B1V, B2V, and B3V, as well as the demons D1V and D2V, are also arrays of the same length. Clearly, the algorithm can be pipelined in the Cyber 205 if one can arrange the arrays D1V and D2V such that their entries (in pairs), take on the values (0, 1), (1, 0), and (1, 1) with probabilities given by eq. 4.

The crucial part of the algorithm is to get such a distribution of demon bits. This is done in subroutine DEMETRO. First, 64 vectors of random numbers are generated one after the other using a shift register random number generator.⁽⁷⁾ Each of these vectors is used to define one string of demon pairs (D1V, D2V) distributed according to eq. 4. The final vectors for D1V and D2V are obtained by merging together, in the 64-bit positions of the words, the 64 strings thus obtained. After each half sweep (update of the odd or even sites of all the 64 lattices), the demon pairs (D1V, D2V)are subjected to a random GATHERand a random shift. The random shifts are arranged so that each string of demons is used in each of the lattices exactly once but in a different order for each lattice. After 64 half sweeps, the demons are reinitialized. This means that we use one random number once for each of the 64 lattices.

In any Metropolis run, one uses a finite sequence of random numbers to compare to $e^{-\beta \Delta S}$. In such a finite run, the set of random numbers used is not uniformly distributed in the interval (0, 1) and this means that the β value is not the desired one but rather, some other value β_{eff} . For our simulation, these effective values of β are given by

$$n_1/n = e^{-4\beta_{\text{eff},1}}$$

$$n_2/n = e^{-8\beta_{\text{eff},2}}$$

$$n_2/n = e^{-12\beta_{\text{eff},3}}$$
(5)

where n is the total number of random numbers used and n_1 , n_2 , and n_3 are

A Fast Algorithm for the Cyber 205 to Simulate the 3D Ising Model

the number of times these random numbers are smaller than $e^{-4\beta}$, $e^{-8\beta}$, and $e^{-12\beta}$, respectively.

This expected shift in β can be easily understood theoretically. Given *n* random numbers in the interval (0, 1), the probability for n_i of them being in an interval of length $p_k = e^{-4k\beta}$ is given by the binomial distribution

$$P_{k}(n_{i}) = \binom{n}{n_{i}} p_{k}^{n_{i}} (1 - p_{k})^{n - n_{i}}$$
(6)

If we define $x \equiv n_i/n$, then this probability distribution has mean $\bar{x} = p_k$ and standard deviation $\sigma_k = \sqrt{p_k(1 - p_k)/n}$. Note that the error in β is statistical and proportional to $1/\sqrt{n}$ and disappears in the limit of an infinite simulation. It is easy to correct for this shift in β . This is done by correcting each order parameter O according to

$$O(\beta) = O(\beta_{\text{eff}}) + \frac{\partial O}{\partial \beta} \Big|_{\beta_{\text{eff}}} (\beta - \beta_{\text{eff}})$$
(7)

The reason we need to worry about this error (which is actually present even in standard Metropolis updating but is less relevant there) is the following: In our simulation, each of the 64 lattices uses the same set of random numbers. Therefore, each of the lattices has the same β_{eff} on average and the effects of the shift in β add coherently. In a standard Metropolis run on 64 lattices using different random number streams on each, the effective length of the random number stream is 64 times our length. The shift in β then is smaller by a factor of 8.

We obtained one single value of the effective β using the average demon action E_{demon} via the formula

$$\frac{4e^{-4\beta_{\text{eff},1}} + 8e^{-8\beta_{\text{eff},2}} + 12e^{-12\beta_{\text{eff},3}}}{1 + e^{-4\beta_{\text{eff},1}} + e^{-8\beta_{\text{eff},2}} + e^{-12\beta_{\text{eff},3}}} = \langle E_{\text{demon}} \rangle$$
$$= \frac{4e^{-4\beta_{\text{eff}}} + 8e^{-4\beta_{\text{eff}}} + 12z^{-12\beta_{\text{eff}}}}{1 + e^{-4\beta_{\text{eff}}} + e^{-8\beta_{\text{eff}}} + e^{-12\beta_{\text{eff}}}}$$
(8)

We have tested these ideas on the two-dimensional Ising model where exact answers are known. This is shown in Fig. 1. The 40 points in the graphs correspond to different runs, each of them coming from 20,000 sweeps in a set of 64 lattices of size 20^2 at $\beta = 0.44$ and averaging over the last 10,000 sweeps. In Fig. 1 we show average values of $\langle S^2 \rangle$ before and after the correction. The errors were obtained by using the 64 average values from the 64 independent lattices. The uncorrected data values (Fig. 1a), as expected, are scattered around a shifted β with a Gaussian

Fig. 1. 40 data points for $\langle S^2 \rangle$ on 20^2 lattices at $\beta = .44$. Each point corresponds to averaging for 10,000 sweeps on the set of 64 lattices after thermalizing for 10,000 sweeps. The error bars were obtained from fluctuations between the 64 data sets from the different lattices. (a) Shows the data without correction; (b) Shows the data after correcting for the shift in β and using eq. 10. (c) Shows the data corresponding to the same experiment but using a different random number stream for all 64 lattices. (a conventional, but slower, standard Metropolis simulation). The vertical line that crosses the graphs corresponds to the exact value. Note that the error bars are all of almost the same size.

```
c 3-d ising model program
C
    this program performs the metropolis algorithm on cubic lattices of size up to 50+3 , it uses periodic boundary conditions.
с
с
    the lattice size must be even.
            program ising ( input , output , tape6 , tape7 )
c define parameters
                                         lattice size (must also be def.in sub. metro)
initialízation parameter (0:ordered start,
                             init =
с
                                            1:disordered start,6:reads lattice from tape6)
                                         (1,0):(does,does not) write last conf. to tape7
seed for the r.n.g. (if =0 ==> default seed.)

# of beta (= 1/Temperature) values processed

initial beta
с
                             istor =
                             iseed =
c
с
                            пb
                                     =
с
                            beto =
                                           succesive decrements in beta.
с
                            dibe
                                      =
с
                            nsba ≖
                                           # of sweeps to thermalize
# of sweeps during averaging
¢
                            nsw
                                     =
                            nav = number of sweeps between measurements.
np,nq = prim. trinomial for the shift register random
number generator (must also be defined in the sub. metro)
с
с
¢
                                                                             (nh > np > nq)
с
                                           20
           parameter (l
                                      =
                            ,init =
         +
                                            1
         t
                             ,istor=
                                           ø
         +
                             ,iseed≕
                                            7893789324783
         +
                             , nb
                                      m
                                           1
                                           .22165
         +
                             ,beta =
                             ,dibe =
         +
                                             0
                             ,nsba =
                                           25000
        +
                                            25000
        +
                             .nsw =
                             ,nav ≠
                                            100
                                      = 2281
                             . np
                                             715
                             , ng
                                      ....
           , ns=l**3, Im=l+1 , nh=ns/2 , nhp=nh+1 , nt=nh+np)
      VARIABLES IN THE PROGRAM
Ċ

    bx.by.bz: Indexing vectors to implement the periodic boundary conditions
    xrand: vector for the shift register random number generator
    xv.xv1,xv2,dn1v,dn2v: help vectors (to store intermediate results)
    spin: vector of ising spin variables for the 64 lattices.

    b1v, b2v, b3v: vectors used in the updating
c
     d1v,d2v: demon vectors
с
     nr,nrp,num,nr1,nr2: vectors used in demon permutations.
ran: vector for congruential random number generator.
с
с
     tf,ti,tm,ta,timet,t64,tt: scalars
                                                              for timing.
с
     164, n64: vectors used to permute demons d1v, d2v.
    am,s,r,abe,ntb: variables used in measurements.
cv,cv1,cv2: bit vectors used to update the demons
С
С
            integer bx,by,bz,xrand,xv,x1v,x2v,spin,b1v,b2v,b3v
         c ,d1v,d2v,dn1v,dn2v
                             ,dx,dy,dz,x,x1,x2,dxra,dsp1,dsp2,b1,b2,b3,d1,d2
         с
        c ,dn1,dn2,dnr,dnrp,dnr1,dnr2
            descriptor dx,dy,dz,x,x1,x2,dxro,dsp1,dsp2,b1,b2,b3,d1,d2
        c ,dn1,dn2,dnr,dnrp,dnr1,dnr2,ia,ib,ic,isd
            bit cv, cv1, cv2
            common/blk/ spin(ns),bx(nh),by(nh),bz(nh),xv(nh),x1v(nh),x2v(nh)
,b1v(nh),b2v(nh),b3v(nh),d1v(nh),d2v(nh),dn1v(nh),dn2v(nh)
,nrp(nh),num(nh),nr2(nh),nr1(nh),nr(nh),rn(nh),tf,ti,tm,ta
,timet,t64,i64(64),n64(64),am(64),s(64),r(16,64),abe(3)
,ntb,xrand(nt).cv(2+nh),cv1(2+nh),cv2(2+nh)
         с
         с
            data tf,ti,tm,ta,timet,tt,t64,(abe(i),i=1,3),ntb /10+.0,0/
c ASSIGN DESCRIPTORS TO ARRAYS:
           data dsp1,dsp2 / spin(1;nh),spin(nhp;nh) /
data dx,dy,dz / bx(1;nh),by(1;nh),bz(1;nh) /
data b1,b2,b3 / b1v(1;nh),b2v(1;nh),b3v(1;nh) /
data d1,d2 / d1v(1;nh),d2v(1;nh),nrp(1;nh),nr1(1;nh),nr2(1;nh)/
data dn1,dn2,x,x1,x2 / dn1v(1;nh),dn2v(1;nh),xv(1;nh),x1v(1;nh)

                                               , x2v(1;nh) /
```

Fig. 2. Listing of the code.

```
assign ia , xrand( 1 ; nh
assign ib , xrand( nq+1 ; nh
assign ic , xrand( nh+1 ; np
assign isd , xrand( 1 ; np
                                                1 : nh `
          assign isd , xrand( 1 ; np
assign dxra , xrand( np+1 ; nh
                                                          Ś
           tt1=second()
           do 74 i=1,nh
 74
          num(i)≍i
c initialization of: random number seeds, the lattice, and the indexing
c vectors
           if(iseed.ne.0)call ranset(iseed)
           call raninit(xrand,np)
call initlat(init,betao,nso,dsp1,dsp2,ran,x1,spin,nh,ns,l)
          call index(bx,by,bz,l)
c begin simulation
          do 1234 iib = 1,nb
          b = beta - dibe*iib
if ( b.lt.0. ) b=-b
          call metro( nsba , 0
                                              , b ,dsp1,dsp2,dx,dy,dz,x,x1,x2,b1,b2,b3
          , d1, d2, dn1, dn2, dnrp, dnr1, dnr2, dnr, dxra, ia, ib, ic, isd)
cali metro( nsw , nov , b , dsp1, dsp2, dx, dy, dz, x, x1, x2, b1, b2, b3
, d1, d2, dn1, dn2, dnrp, dnr1, dnr2, dnr, dxra, ia, ib, ic, isd)
       +
c write the data to the output file
       if(nsw.ne.0)call_data(b.nsw.nsba,nav.init,betao,nso,iib,ntb
                                           , abe, ns, r)
 1234 continue
c simulation ends. Stores the last lattice
           if(istor.eq.1)then
           nen=nebo+new
           if(dibe.eq..0)then
           nsn=nb+nsn
           if (betao.eq.beta)nsn=nso+nsn
           endif
          write(7,+)|,beta,nsn
          do 77`i=1´ns
write(7,177) spin(i)
 77
  177
           format(z16)
           endif
c timing information:
           tt=second()-tt1
           print*,'time spent in the main parts of the program :
           print+
          prints65,' program ising =
print565,' in updating =
print565,' in measuring =
print565,' sub. demetro =
print565,' sub. initrr =
print565,' sub. init64 =
print565,' sub. meas =
                                                        ',tt
',timet
',ta
',tf
',ti
                                                         ',t64
.tm
           print*
           prints66,(64e-6*ns*nb*(nsba+nsw))/timet
format(1x,a20,f10.2,' seconds')
format(' running at ',f5.1,' megaflips')
 565
 566
           print*
           stop
           end
           subroutine index(bx,by,bz,l)
integer bx(*) ,by(*), bz(*)
c defines the index vectors to implement periodic boundary conditions.
```

lm = 1 ~ 1

```
do 1 iz = 0, im
                izm = mod(iz+lm, l)
do 1 iy = 0, lm
                iym = mod( iy+im , | )
do 1 ix = 0,1m
ixn = mod (ix+1 , | )
                ixn = mod (ix+1 , 1 )
if ( mod(iy+iz,2) .eq. 0 )ixn = mod( ix+1m , 1 )
                 if(mod(ix+iy+iz,2).eq.0)then
                 \begin{array}{l} \text{Intermed}(x+1)+1/2, 2/, ed. \text{ filter} \\ n = (iz +1 + iy) \cdot e(1/2) + (ix - mod(ix , 2))/2 + 1 \\ bx(n) = (iz +1 + iy) \cdot (1/2) + (ix - mod(ix , 2))/2 \\ by(n) = (iz +1 + iym) \cdot (1/2) + (ix - mod(ix , 2))/2 \\ bz(n) = (izm + 1 + iy) \cdot (1/2) + (ix - mod(ix , 2))/2 \\ \end{array} 
                 endif
                continue
   1
                return
                end
                subroutine initnr(nr,ti,nrp,num,ran,nh)
c creates a vector (nr) containing a random permutation of 
c the integers 0 to nh-1
                dimension nr(*) , nrp(*) , num(*) , ran(*)
                ti1=second()
                call vranf(ran, nh)
                nrp(1;nh)=num(1;nh)+ran(1;nh)+1
call q8vrev(x'00',,nrp(1;nh),,..nr(1;nh))
nrp(1;nh)=num(1;nh)-1
                do 1 i * 1,nh
n=nr(i)
nr(i) = nrp(n)
nv=nh-i-n+1
                nrp(n;nh-i-n+1)=nrp(n+1;nh-i-n+1)
   1
                continue
                ti=ti+second()-ti1
                return
                end
subroutine metro( nsw , nav , b ,dsp1,dsp2,dx,dy,dz,x,x1,x2,b1
+ ,b2,b3,d1,d2,dn1,dn2,dnrp,dnr1,dnr2,dnr,dxra,ia,ib,ic,isd)
c metro( nsw , nav , b , ... ) does nsw sweeps measuring after each nav
c sweeps at beta = b. if nov = 0 no measurements are done. The other
c arguments are passive. They are descriptors needed by this routine.
parameter (i=20,ns=1+3,lm=i-1,nh=ns/2,lnp=nh+1)
porameter (np=2281,nq=715,nt=nh+np)
           integer bx, by, bz, xrand, xv, x1v, x2v, spin, b1v, b2v, b3v
c .d1v, d2v, dn1v, dn2v
                                       ,dx,dy,dz,x,x1,x2,dxra,dsp1,dsp2,b1,b2,b3,d1,d2
           с
                   ,dn1,dn2,dnr,dnrp,dnr1,dnr2
           с
               descriptor dx,dy,dz,x,x1,x2,dxra,dsp1,dsp2,b1,b2,b3,d1,d2
           descriptor 4x,dy,dz,x,x1,x2,dxra,dsp1,dsp2,b1,b2,b3,d1,d2
c,dn1,dn2,dnr,dnrp,dnr1,dnr2,ia,ib,ic,isd
bit ev,ev1,ev2
common/b1k/ spin(ns),bx(nh),by(nh),bz(nh),xv(nh),x1v(nh),x2v(nh)
c,b1v(nh),b2v(nh),b3v(nh),d1v(nh),d2v(nh),dn1v(nh),dn2v(nh)
c,nrp(nh),num(nh),nr2(nh),nr1(nh),rr(nh),ron(nh),t1,ti,tm,ta
c,timet,t64,i64(64),a64(64),a64(4),a(64),r(16,64),abe(3),ntb
c,xrand(nt),cv(2*nh),cv1(2*nh),cv2(2*nh)
c set counters
                if( nav.ne.0 )then
               r(1,1;1024)=.0
endif
                naver
                                        =
                                               ø
                is=64
                isnr≖63
c does now sweeps
                do 99999 niter = 1, nsw
                t2 = second()
```

```
c creates vectors of demons and random permutations
                  if( is.eq.64 )then
                  is—0
                 call demetro(b,nav,d1,d2,ia,ib,ic,isd,dxra,xrand,tf,ntb
             +
                                                              ,d1v,d2v,abe,nh,np+1,cv,cv1,cv2)
                 t641≈second()
                 call init64( i64 , n6
t64=t64+second()-t641
                                                                n64)
                  xv(1)=nr2(nh)
                  xv(2;nh-1)=nr2(1;nh-1)
                  dnr2≈x
                  call q8 vtovx (x' 00 ',, dnr2 ,, dnr1 ,, x )
                  dnr1=x
                  isnr≈isnr+1
                  if(isnr.eq.64)then
                 call initnr(nr,ti,nrp,num,ran,nh)
call initnr(nr1,ti,nrp,num,ran,nh)
call initnr(nr2,ti,nrp,num,ran,nh)
                  isnr≔0
                  endif
                 endif
c updates even sites
c adds the six products x to [b3,b2,b1] = [0,0,1]
                                                v(x' 00
                                                                                   dsp1 ,,
                 call q8 xor v(x' 00 ...
call q8 vxtov (x' 00 ...
call q8 xor v(x' 00 '...
call q8 xor v(x' 00 '...
call q8 xor v(x' 00 '...
call q8 vxtov (x' 00 '...
call q8 vxtov (x' 00 '...
                                                                     <u>.</u>...
                 call a8 xor
                                                                                                           dsp2
                                                                                                           dsp2
                                                                                                                                            ŝ
                                                                                   dy
x1
                                                                                                                      ...
                                                                                                                                 x1
                                                                                               ...
                                                                                                           dsp1
                                                                                                                                 x1
                                                                                                 . .
                                                                                                                       ..
                                                                                   x1
                                                                                                           x
                                                                                                                                 b2
                                                                                                 . .
                                                                                                                       .,
                                                                                    x1
                                                                                                                                 b1

      call qB xor v(x' 00'...

      call qB vxtov (x' 00'...

      call qB vor v(x' 00'...

      call qB vor v(x' 00'...

      call qB and v(x' 01'...

      call qB xor v(x' 00'...

                                                                                                 ...
                                                                                                           x
                                                                                                                       ..
                                                                                                           dsp2
                                                                                    dz
                                                                                                 . .
                                                                                                                       ۰,
                                                                                                                                 х
                                                                                   х
                                                                                               ..
                                                                                                           dsp1 ,,
                                                                                                                                 x
                                                                                                           dsp2
                                                                                   dx
                                                                                                .,
                                                                                                                       ٠,
                                                                                                                                 x1
                                                                                                           dsp1
                                                                                   x1
                                                                                                                                 x1
                                                                                                 ,,
                                                                                                                      .,
                                                                                                                                 dn2
                                                                                   x1
                                                                                                          х
                                                                                                 ..
                                                                                                                       ..
                                                                                                                                 dn1
                                                                                   x1
                                                                                                 ..
                                                                                                                       ..
                                                                                   dn2
                                                                                                           b2
                                                                                                                                 ЪЗ
                                                                                               ..
                                                                                                                      ...
                                                                                   dn1
                                                                                                           b1
                                                                                                                                 x
                                                                                               .,
                                                                                                                     . .
                                                                                                                                 b2
                                                                                                           b2
                                                                                   dn2
                                                                                                 . .
                                                                                                                       .,
                                                                                                           b2
                                                                                                                                 Ь2
                                                                                   x
                                                                                                 . .
                                                                                                                       ..
                                                                                    dn1
                                                                                                           ь1
                                                                                                                                 ь1
                                                                                                 ..
                                                                                                                       ..
                                                                                                           dsp2
                                                                                   dy
                                                                                                                                 х
                                                                                                 ..
                                                                                                                       ...
                                                                                                           dsp1
                                                                                    ×
                                                                                                                       , .
                                                                                                                                 х
                                                                                                 . .
                                                                                   dz
                                                                                                 . .
                                                                                                           dsp2
                                                                                                                       , ,
                                                                                                                                 x1
                                                                                                           dsp1
                                                                                   x1
                                                                                                                                 x 1
                                                                                                 ..
                                                                                                                      .,
                                                                                   x1
                                                                                                                                 dn2
                                                                                                 ..
                                                                                                           ×
                                                                                                                        . .
                                                                                   x1
                                                                                                                                 dn1
                                                                                                 ..
                                                                                   dn2
                                                                                                           b2
                                                                                                                                 x1
                                                                                              ..
                                                                                                                       ..
                                                                                   x1
                                                                                                 ..
                                                                                                           ьз
                                                                                                                                 b3
                                                                                                                       . .
                                                                                    dn2
                                                                                               ...
                                                                                                           b2
                                                                                                                                 b2
                                                                                                                       . .
                                                                                    dn1
                                                                                                           b1
                                                                                                                                 x1
                                                                                                 . .
                                                                                                                       ..
                                                                                                                                 x2
                                                                                   x1
                                                                                                           b2
                                                                                                 ..
                                                                                                                       ..
                                                                                   x2
                                                                                                           ь3
                                                                                                                                 bЗ
                                                                                                 .,
                                                                                                                       ...
                                                                                    x1
                                                                                                           b2
                                                                                                                                 b2
                                                   v(x' 00 ',,
v(x' 00 ',,
                                                                                                                       ..
                                                                                                 . .
                  coll o8 xor
                                                                                    dn1
                                                                                                           ь1
                                                                                                                                 ъ1
                                                                                                 . .
                                                                                                                        , ,
c keeps third demon ( now b3≂1 if inc(s) < 0 )
c gets a new set of demons
                  call q8 vtovx (x' 00 ',, dnr1 ,, dnr ,, dnrp )
                  is = is + 1
ishi=i64(is)
                                                                                                         a1 ,, dn1 )
ishi ,, d1 )
d2
                 call q8 shiftv(x' 08 ',, dnrp ,,
call q8 shiftv(x' 08 ',, dn1 ,,
call q8 shiftv(x' 08 ',, dn2 ,,
call q8 shiftv(x' 08 ',, dn2 ,,
                                                                                                                                  dn2 )
                                                                                                           d2
                                                                                                                       ...
                                                                                                          ishi ,,
                                                                                                                                 d2
c now checks what happens when inc(s) > 0 (that is when b3=0 ) c adds demons [d2,d1] to [x=0,b2,b1]
                                                  v(x' 01 ',.
v(x' 00 ',.
v(x' 01 ',.
v(x' 01 ',.
                                                                                                           Ь2
Ь2
Ь1
                  call q8 and
                                                                                    d2
                                                                                                  . .
                                                                                                                        .,
                  call q8 xor
call q8 and
call q8 and
                                                                                    d2
                                                                                                                                  b2
                                                                                                                                            . .
                                                                                                 • •
                                                                                    dī
                                                                                                                                  x1
                                                                                                 ..
                                                                                                                        ::
                                                                                                           b2
                                                                                                                                  x2
                                                                                    x1
                                                                      11
                                                                                                 ..
                                                   v(x' 00
                  call q8 xor
                                                                                    x2
                                                                                                 . .
```

c if now x = 1 also flips

```
c x is the acceptance criterion
                                    call q8 or v(x'02',, x ,, b3
                                                                                                                                                                                                                                    .. ×
                                                                                                                                                                                                                                                                                  )
 c updates the spins
                                    call q8 xor v(x'00 ',, dsp1 ,, x _, dsp1)
 c updates odd sites

      call q8 xor v(x' 00', dsp

      call q8 vxtov (x' 00', dy

      call q8 and v(x' 01', x1

      call q8 xor v(x' 00', x1

                                                                                                                                                                     dsp2 .,
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                                                                            ,,
                                                                                                                                                                                                                                                                                     x 1
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                         . .
                                                                                                                                                                                                                                            , ,
                                                                                                                                                                                                ..
                                                                                                                                                                                                                   dsp2
                                                                                                                                                                                                                                             .,
                                                                                                                                                                                                                                                                ¥1
                                                                                                                                                                                                                                                                ь2
                                                                                                                                                                                                . .
                                                                                                                                                                                                                  x
                                                                                                                                                                                                                                             . .
                                                                                                                                                                                                                                                               ь1
                                                                                                                                                                                                • •
                                                                                                                                                                                                                   х
                                                                                                                                                                                                                                             . .
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                              ..
                                                                                                                                                                                                                                            . .
                                                                                                                                                                                                                                                               х

      Coll q8 vxtov (x' 00', x

      call q8 xor v(x' 00', x

      call q8 vxtov (x' 00', x

      call q8 xor v(x' 00', x1

      call q8 xor v(x' 01', x1

      call q8 and v(x' 01', x1

      call q8 and v(x' 01', dn2

      call q8 xor v(x' 00', x1

      call q8 and v(x' 01', dn1

      call q8 xor v(x' 00', x1

      call q8 xor v(x' 00', dn2

      call q8 xor v(x' 00', x

      call q8 xor v(x' 01', x

                                                                                                                                                                                                                   dsp2
                                                                                                                                                                                                                                            ..
                                                                                                                                                                                              ••
                                                                                                                                                                                             ..
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                                                                                                x1
                                                                                                                                                                                                                                             . .
                                                                                                                                                                                                                  dsp2
                                                                                                                                                                                                                                                                x 1
                                                                                                                                                                                             .,
                                                                                                                                                                                                                                            . .
                                                                                                                                                                                                                                                                dn2
                                                                                                                                                                                                • •
                                                                                                                                                                                                                   х
                                                                                                                                                                                                                                             ..
                                                                                                                                                                                                                                                                 dn 1
                                                                                                                                                                                                . .
                                                                                                                                                                                                                                             ...
                                                                                                                                                                                                                   ь2
                                                                                                                                                                                                                                                                ь3
                                                                                                                                                                                           ...
                                                                                                                                                                                                                                             ...
                                                                                                                                                                                                                   ь1
                                                                                                                                                                                                                                                                 x
                                                                                                                                                                                                                                            ..
                                                                                                                                                                                                                                                                ĥ2
                                                                                                                                                                                          ..
                                                                                                                                                                                                                  ь2
                                                                                                                                                                                                                                            . .
                                                                                                                                                                                                . .
                                                                                                                                                                                                                   h2
                                                                                                                                                                                                                                                               h2
                                                                                                                                                                                                                                             .,
                                                                                                                                                                                                                   ь1
                                                                                                                                                                                                                                                               ь1
                                                                                                                                                                                                . .
                                                                                                                                                                                                                                              •••
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                                .,
                                                                                                                                                                                                                                          ••
                                                                                                                                                                                                                                                                x
                                                                                                                                                                                                                   dsp2
                                                                                                                                                                                                                                                                x
                                                                                                                                                                                                                                            . .
                                                                                                                                                                                                ,,
                                                                                                                                                                                              .,
                                                                                                                                                                                                                   dsp1
                                                                                                                                                                                                                                            ,,
                                                                                                                                                                                                                                                                 x 1
                                                                                                                                                                                                                                                                x1
dn2
                                                                                                                                                                                             ..
                                                                                                                                                                                                                   dsp2
                                                                                                                                                                                                                                             . .
                                    call q8 or v(x' 02', x1 ,,
call q8 xorn v(x' 07', x1 ,,
call q8 xorn v(x' 07', dn2 ,,
call q8 xor v(x' 00', dn2 ,,
call q8 xor v(x' 00', dn1 ,,
call q8 and v(x' 01', dn1 ,,
call q8 and v(x' 01', x1 ,,
call q8 xor v(x' 00', x2 ,,
call q8 xor v(x' 00', x1 
                                                                                                                                                                                             ,,
                                                                                                                                                                                                                   х
                                                                                                                                                                                                                                             ,,
                                                                                                                                                                                                                                                               dn1
                                                                                                                                                                                                                   ¥
                                                                                                                                                                                                                                             ..
                                                                                                                                                                                                                   Ь2
                                                                                                                                                                                                                                                                 x1
                                                                                                                                                                                                                                             .,
                                                                                                                                                                                                                   ьЗ
                                                                                                                                                                                                                                                                 ь3
                                                                                                                                                                                             •••
                                                                                                                                                                                                                                          ...
                                                                                                                                                                                                                   b2
                                                                                                                                                                                                                                                                 ь2
                                                                                                                                                                                                                                            ..
                                                                                                                                                                                                                                                                x1
x2
b3
                                                                                                                                                                                                                   ь1
                                                                                                                                                                                                                                             ...
                                                                                                                                                                                                                   b2
                                                                                                                                                                                                                                             ..
                                                                                                                                                                                                                   ь3
                                                                                                                                                                                                                                              . .
                                    call q8 xor v(x' 00
call q8 xor v(x' 00
call q8 ytovx (x' 00
                                                                                                                                            ,
                                                                                                                                                                                                                   ь2
                                                                                                                                                                                                                                                                 b2
                                                                                                                                              `,,
`,,
                                                                                                                                                                       x1
                                                                                                                                                                                                 ..
                                                                                                                                                                                                                                              , ,
                                                                                                                                                                       dn1
                                                                                                                                                                                                                   ь1
                                                                                                                                                                       dn1 ,,
dnr1 ,,
                                                                                                                                                                                                                                                                 ь1
                                                                                                                                                                                                                                              . .
                                                                                                                                                                                                                                                                                      Ś
                                                                                                                                                                                                                     dnrp
                                                                                                                                                                                                                                                             dnr
                                                                                                                                                                                                                                             . .
                                      is=is+1
                                      ishi=i64(is)
                                  ishi=i64(is)

call q8 vtovx (x' 00 '...

call q8 shiftv(x' 08 '...

call q8 shiftv(x' 08 '...

call q8 shiftv(x' 08 '...

call q8 and v(x' 01 '...

call q8 xor v(x' 00 '...

call q8 and v(x' 01 '...

call q8 xor v(x' 00 '...
                                                                                                                                                                                                                     d1
                                                                                                                                                                                                                                                                 dn1
                                                                                                                                                                       dnr
                                                                                                                                                                                              .,
                                                                                                                                                                                                                                              . .
                                                                                                                                                                                                                                                                                      )
                                                                                                                                                                                                                     ishi .
                                                                                                                                                                        dn1
                                                                                                                                                                                                                                                                 d1
                                                                                                                                                                                                . .
                                                                                                                                                                                                                                                                 dn2
                                                                                                                                                                        dnr
                                                                                                                                                                                                                     d2
                                                                                                                                                                                               , ,
                                                                                                                                                                                                                                              ..
                                                                                                                                                                         dn2
                                                                                                                                                                                                                      ishi
                                                                                                                                                                                                                                                                 d2
                                                                                                                                                                                                                                              ..
                                                                                                                                                                                              ,,
                                                                                                                                                                        d2
                                                                                                                                                                                                                   b2
                                                                                                                                                                                                                                                                 х
                                                                                                                                                                                               ..
                                                                                                                                                                                                                                              . .
                                                                                                                                                                                                                                                                ĥ2
                                                                                                                                                                                                                   h2
                                                                                                                                                                        d2
                                                                                                                                                                                                .,
                                                                                                                                                                                                                                              ..
                                                                                                                                                                        d1
                                                                                                                                                                                                                   ь1
                                                                                                                                                                                                                                                                 x1
                                                                                                                                                                                                 . .
                                                                                                                                                                                                                                               , ,
                                                                                                                                                                                                                   ь2
                                                                                                                                                                                                                                                                 x2
                                                                                                                                                                       x1
                                                                                                                                                                                                 ..
                                                                                                                                                                                                                                              ..
                                                                                                                                            <u>.</u>...
                                                                                                                                                                       x2
                                                                                                                                                                                                                                                                 ×
                                                                                                                                                                                                                     х
                                                                                                                                                                                                . .
                                                                                                                                                                                                                                               , ,
                                                                                                      v(x' 02
                                      call q8 or
                                                                                                                                                                                                                   ьЗ
                                                                                                                                              ÷::
                                                                                                                                                                                                                                              . .
                                                                                                                                                                                                 ..
                                                                                                     v(x' 00
                                      call q8 xor
                                                                                                                                                                        dsp2 ,,
                                                                                                                                                                                                                                                                 dsp2)
                                                                                                                                                                                                                  х
                                                                                                                                                                                                                                               ۰,
  c times the updating
                                      timet = timet + second()-t2
  c takes averages
                                      if( nav.eq.0 )goto 99999
if( mod(niter,nav).ne.0 )goto 99999
                                       ta3=second()
                                       call meas(dsp1,dsp2,dx,dy,dz,x,x1,x2,am,s,nh,tm)
                                      naver = 1
do 771 i=1,64
                                                                                           = naver+1
                                      ss=s(i)
                                      rm=abs(am(i))
                                       rm2=rm+rm
                                       rm4=rm2+rm2
                                      $2=$$*$$
                                      s4=s2+s2
                                     \begin{array}{l} s_{i} = s_{i} = s_{i} \leq s_{i} \leq s_{i} \\ r(1, i) = r(1, i) + am(i) \\ r(2, i) = r(2, i) + rm \\ r(3, i) = r(3, i) + rm \\ r(4, i) = r(4, i) + rm \\ r(5, i) = r(5, i) + ss \end{array}
```

```
      r(6,i) = r(6,i) + s2 \\ r(7,i) = r(7,i) + s4 \\ r(8,i) = r(8,i) + rm*ss \\ r(9,i) = r(9,i) + rm2*ss \\ r(10,i) = r(10,i) + rm4*ss \\ r(11,i) = r(11,i) + ss*s2 \\ r(12,i) = r(12,i) + ss*s4 
  771
              ta=ta+second()-ta3
99999 continue
              if( nav.gt.nsw .or. nav.eq.0 )return
r(1,1;1024) = r(1,1;1024) /naver
              return
              end
          subroutine demetro(b,nav,d1,d2,ia,ib,ic,isd,dxra,xrand,tf,ntb
+ ,d1v,d2v,abe,nh,npm,cv,cv1,cv2)
c sets the demons with the right probabilities
              integer xrand(*),d1v(*),d2v(*),dxra,d1,d2
             descriptor dxra.d(2),div(4),dzv(4),dzv(4),dxrd
descriptor dxra.d(,d2,ia,ib,ic,isd
bit cv(+),cv1(+),cv2(+)
dimension abe(3),be(3)
half precision ma(2),e1,e2,e3
equivalence(mar,ma(1))
              tf1=second()
             nh2=2*nh
             d1 = 0
d2 = 0
             be(1;3)=0
             rrr=1./nh2
c gets normalized boltzman factors
             e1 = 2.**23 *exp( -4.*b)
e2 = 2.**23 *exp( -8.*b)
e3 = 2.**23 *exp( -12.*b)
c loops over the 32 bits of the halfwords (uses half precision)
             do 1 i=0,31
             mar=shift(1,i)
c gets random numbers using a shif register random number generator
             call q8 xor v(x'00' ,, ia ,, ib ,, dxra )
call q8 vto v(x'00' ,, ic ,,, isd )
c sets the demons and meassures the effective beta
             call q8cmpit(x'88',,xrand(npm;nh2),.e2 ,cv(1;nh2))
call q8cmpit(x'88',,xrand(npm;nh2),.e1 ,cv1(1;nh2))
call q8cmpit(x'88',,xrand(npm;nh2),.e3 ,cv2(1;nh2))
             if(nav.ne.0)then
be(1)=be(1)+q8scnt(cv1(1;nh2))*rrr
be(2)=be(2)+q8scnt(cv(1;nh2))*rrr
be(3)=be(3)+q8scnt(cv2(1;nh2))*rrr
             call q8xor v(x'88', d2v(1;nh2) ,,ma(2),cv(1;nh2),d2v(1;nh2))
call q8cndn(x'80',.cv1(1;nh2),cv2(1;nh2),cv1(1;nh2))
call q8xor (x'00',cv1(1;nh2),cv(1;nh2),cv(1;nh2),cv1(1;nh2))
call q8xor v(x'88',d1v(1;nh2),.ma(2),cv(1;nh2),d1v(1;nh2))
             continue
 1
             if(nav.ne.0)then
abe(1;3)=abe(1;3)+be(1;3)/32.
ntb=ntb+1
             endif
             tf=tf+second()-tf1
             return
             end
```

```
subroutine meas(dsp1,dsp2,dx,dy,dz,x,x1,x2,am,s,nh,tm)
c measures the magnetization and the action for the 64 lattices.
               integer dx,dy,dz,x,x1,x2,dsp1,dsp2
descriptor dx,dy,dz,x,x1,x2,dsp1,dsp2
dimension am(*),s(*)
               tm1=second()
              do 2 i = 1,64
ma = shift( 1 , i-1 )
ls = mod( 65-i , 64 )
c measures the magnetization
               call q8 and v(x' 09 ',, dsp1 ,, ma
call q8 shiftv(x' 08 ',, x1 ,, ls
                                                                                                   ,, x1 )
,, x1 }
               coli q8 shiftv(x 08 ,, x) ,, is
coli q8 and v(x 09 ,, dsp2 ,, ma
coli q8 shiftv(x 08 ', x2 ,, is
om(i) = om(i) + q8ssum(x2)
                                                                                                      ,, ×2
                                                                                                                        )
                                                                                                      ,, ×2
c measures the action
              call q8 xor v(x' 00 ',. x1

s(i) = q8ssum(x)

call q8 xotov (x' 00 ',. dy

call q8 xotov (x' 00 ',. x

s(i) = s(i) + q8ssum(x)

call q8 xotov (x' 00 ',. dz

call q8 xotov (x' 00 ',. dz

call q8 xot v(x' 00 ',. x

s(i) = s(i) + q8ssum(x)

call q8 xot v(x' 00 ',. x

s(i) = s(i) + q8ssum(x)

call q8 xot v(x' 00 ',. x

s(i) = s(i) + q8ssum(x)

call q8 xot v(x' 00 ',. dz

call q8 xot v(x' 00 ',. x

s(i) = s(i) + q8ssum(x)

x s(i) = s(i) + q8ssum(x)
               call q8 xor y(x' 00 ',, x1
                                                                                 ,. ×2
                                                                                                                       )
                                                                                                       ,, ×
                                                                                 ., x2
                                                                                                                        }
                                                                                                       . .
                                                                                                              ×
                                                                                  ..
                                                                                           x1
                                                                                                       . .
                                                                                ,, x2
,, x1
                                                                                                       ,, ×
,, ×
                                                                                                                        }
                                                                                ,, x2
,, x1
                                                                                                      ,, ×
                                                                                                                        }
                                                                                                       , ,
                                                                                                               x
                                                                                 ,, x2
                                                                                                       , ,
                                                                                                                        }
                                                                                                              x
                                                                                 ,, x1
                                                                                                      ,, x
                                                                                ,, x2
,, x1
                                                                                                              ×
                                                                                                                        }
                                                                                                       ..
                                                                                                      ,, x
  2
               continue
               am(1;64) = 1. - am(1;64)/nh
s(1;64) = 1. - s(1;64) /(3.*nh)
tm=tm+second()-tm1
               return
               end
               subroutine data(b,nsw,nsba,nav,init,betao,nso,iib,ntb,abe,ns,r)
               character a(130)
dimension t(16),v(16),r(16,64),abe(3)
data a/130*'-'/
c writes the header
               print+,a
               print + ,'beta = ',b
if(iib.eg.1)then
              irtiib.eq.ijthen
if(init.eq.@print*,'initial lattice ordered'
if(init.eq.@print*,'initial lattice disordered'
if(init.eq.6)then
print*,'initial lattice read from tape 6, which was termalized'
,' during ',nso,' sweeps at beta = ',betao
endif
           +
               endif
               else
               print*,'initial lattice from previous run'
                endif
           print*,'thermalizing during ',nsba,' sweeps'
print*,'taking averages after every ',nav,' sweeps during '
+ _____,nsw,' sweeps'
               print+,a
c calculates the data for every lattice
```

 $\begin{array}{l}t(1;16) = .0\\v(1;16) = .0\\do \ 1 \ i = 1,64\\r(13,i) = r\\r(14,i) = r\\r(15,i) = r\\r(25,i) = r\end{array}$ 8 + . continue 1 c writes the data averaged from the 64 lattices do 53 i=1,16 t(i) = t(i) / 64.v(i) = sqrt(v(i)/64. - t(i)*t(i)) / 8.53 print*, o print * ,'data from averaging the 64 lattices : n f=0 888 print * print11,' m = ',t(1), '|m| = ',t(2), 'm+2 = ',t(3), 'm+4 = ',t(4)+/- ',v(2), '+/- ',v(3), '+/- ',v(4)print12, print + print12,' s = ',t(5),'st2 = ',t(6),'st4 = ',t(7) print12,' +/- ',v(5),' +/- ',v(6),' +/- ',v(7) print * print13,' xp ='.t(14),' x ='.t(13),' c ='.t(16),' gr ='.t(15) print13,' +/-',v(14),' +/-',v(13),' +/-',v(16),' +/-',v(15) if(nf.eq.1)goto 889 print + format(5x,4(10x,a6,f11.8)) format(32x,3(10x,a6,f11.8)) format(15x,2(a5,f12.5,10x),a5,f12.6,10x,a5,f12.7) 11 12 13 c correctes the data for shifted value of beta. abe(1;3)=abe(1;3)/ntb coe=(abe(1)+2.*abe(2)+3.*abe(3))/(1.+abe(1)+abe(2)+abe(3)) z1=0. z2=1. 22=1. do 75 i=1,100 z=(z1+z2)*.5 ed=(z+2.*z*z*:*z*z*z)/(1.+z+z*z+z*z*z) if(ed.eg.cce)goto 777 if(ed.lt.cce)then z1=z else z2=z endif 75 continue $\begin{array}{l} ba = (-1./4.)*iog(2) \\ rib=3.*ns*(b=ba) \\ t6=t(6) \\ t(2) = t(2) + (t(8) - t(2)*t(5)) \\ t(3) = t(3) + (t(9) - t(3)*t(5)) \\ t(4) = t(4) + (t(10) - t(4)*t(5)) \\ t(6) = t(6) + (t(11) - t(6)*t(5)) \\ t(7) = t(7) + (t(12) - t(7)*t(5)) \\ t(5) = t(5) + (t(6 - t(5))) \\ t(14) = t(3) + ns \\ t(15) = t(4)/(t(3)*t(3)) - 3. \\ t(15) = ns *(t(3) - t(2)*t(2)) \\ t(16) = 3.*ns *(t(6) - t(5)*t(5)) \end{array}$ 777)+rlb)*rlb)*rlb)+rib)+rib Serib print * ,'effective beta = ', ba print * print * ,'corrected data:' nf=1 goto 888 889 print+,a print+ ntb=∞0 abe(1:3)=0.

```
return
           end
           subroutine initlat(init,betco,nso,dsp1,dsp2,ran,x1,spin,nh,ns,!)
c initializes the lattices
           integer spin,x1,dsp1,dsp2
descriptor x1,dsp1,dsp2
dimension spin(*),ran(*)
           dsp1 = 0
dsp2 = 0
if ( init.eq. 1 )then
           do 1 i = 1,64
           ls≕mod(65-i,64)
           x1=0
           call vranf(ran,nh)
           where (ran(1;nh).ge..5)x1=1
call q8 shiftv(x' 08 ',, x1
call q8 xor v(x' 00 ',, x1
                                                            ,, is ,, x1 )
,, dsp1 ,, dsp1)
           x1=0
           call vranf(ran,nh)
where (ran(1;nh).ge..5)x1=1
call q8 shiftv(x' 08 ',, x1
call q8 xor v(x' 00 ',, x1
                                                            ., is ., x1 )
,, dsp2 ,, dsp2)
          continue
  1
           else if(init.eq.6)then
           read(6,*)lo,betao,nso
         do 76 i=1,ns
read(6,177) spin(i)
format(z16)
  76
  177
           endif
           return
           end
           subroutine raninit(xrand,np)
           integer xrand(*)
c initializes the shift register random number generator.
           do 1 i=1,np
           do 1 1-1,11
ic=0
do 2 j=1,55
ic=shift(ic,1)
if((j.1e.23).or.(j.ge.33.and.j.le.55))then
if(ranf().ge..5)ic=or(ic,1)
  2
           continue
  1
           xrond(i)=ic
           return
           end
           subroutine init64( i64 , n64 )
c sets i64 with integers in such a way as to satisfy that the serie
c [i64(1) , i64(1)+i64(2) , ... , i64(1)+i64(2)+...+i64(64) ; (modulo 64)]
c is a random permutation of the numbers 0 to 63.
           dimension i64(64), n64(64)
           n64(2;63)=0
           i64(1)=0
n64(1)=1
           ns=0
do 1 i=2,64
  7
           n=int(63.*ranf())+1
           nso≔mod(n+ns,64)
if(n64(nso+1).eq.1)goto 7
           ns=nso
           n64(ns+1)=1
i64(i)≃n
  1
           return
           end
```

5
ē
5
0
ш
폰

BETA = 0.221650000000 INITIAL LATTICE DISORDERED

	CWFF
	25000
	DI ID I NO
	SWFFDS
WEEP'	100
5000 S	FVFDV
ING 23	AFTFR
E DUR	AGES
LIZING	AVFR
THERMAL	TAKING

TAKING	AVERAG	ES AFTER EVE	RY 16	O SWEEPS DUR	SING	25000 SWEEP							Ì		1
LAT 1	ī ₹	0.0048340	= <u>w</u>	0.2362540	°¶ S	0.3407013	×	110.175	884	₩Ъ	556.703	504	8	13.820515	GR=
LAT 2	ĭ ∎	0.0060040	II X	0.2374780	"s	0.3424333	×	100.785	924	₩ L	551.952	328	ų	11.544944	GR=
LAT 3	¥	0.0572650	# ¥	0.2364070	ŝ	0.3419873	×	107.302	749	ЧЧ	554.40E	906	ĥ	11.325593	GR=
LAT 4	₹	0.0091760	×	0.2296100	۳ ۵	0.3406607	×	96.555	295	Шdх	518.321	312	ľ	10.927884	GR=
LAT 5	ĭ ₹	0.0095580	⊪ ≥	0.2367620	ŝ	0.3410167	¥	97.227	219	ШdХ	545.677	176	ĥ	12.959921	GR=
LAT 6	₹	0.0282970	∥ ∑	0.2313130	ŝ	0.3396833	ř	106.297	386	HHX	534.343	1018	4	14.872295	CR=
LAT 7	ĭ ¥	0.0176570	N N	0.2341750	ŝ	0.3392287	ř	88.899	693	KP≡ X	527.603	138	Ŷ	11.822033	5R=
LAT 8	ĭ ≹	0.0533300	ii X	0.2499920	ŝ	0.3417460	¥	103.686	307	×P≡	603.654	308	ĥ	13.999393	GR=
LAT 9	¥	0.0011660	∥ ⋧	0.2428540	°,	0.3429007	×	94.774	681	×P≡	566.599	204	ð	12.160427	GR=
LAT 10	Ĩ	0.0645830	 2	0.2357510	ů#	0.3415207	¥	105.472	886	КР≡	550.101	158	ĥ	13.831400	GR=
LAT 11	ī ¥	0.0644610	∥ ∑	0.2312430	°,	0.3399600	×	107.025	518	₩	534.812	118	ů	12.742202	GR=
LAT 12	Ŧ	0.0571420	H	0.2449060	S=	0.3432587	×	102.932	501	≞d×	582.764	-092	ő	13.806341	GR=
LAT 13	Ŧ	0.0178130	×	0.2385110	ŝ	0.3427120	×	101.954	661	a adx adx	557.054	638	ľ	12.487988	GR ≞
LAT 14	Ŧ	0.0222410	N	0.2428410	ŝ	0.3416220	×	105.205	192	ШЧХ	576.979	202	å	14.633021	6R=
LAT 15	Ŧ	0.0511210	N N	0.2472350	å	0.3448967	!	110.701	104	×P=	599.702	266	8	13.894701	SR≝
LAT 16	Ĭ	8.0228950	<u> </u> 2	0.2398090	ĥ	0.3416553	×	101.638	066	L Z	561 705	842	å	13.583701	GR∎
LAT 17	Ĩ ∦	o.0063080	<u> </u> 2	0.2367260	S.	0.3404867	¥	99.561	595	₩ Z	547.875	188	ľ	12.919553	GR=
LAT 18	Ţ	0.0140420	= N	0.2344560	ŝ	0.3404773	×	99.605	921	KP⊪	539.362	848	ĥ	13.586372	GR=
LAT 19	Ť	0.0046000	H	0.2374220	ŝ	0.3421447	×	100.684	839	₩ E	551.638	488	ľ	13.391730	GR _
LAT 20	¥	0.0655720	×	0.2454060	"s	0.3426327	¥	102.462	225	Ē	584.255	064	ł	13.413788	GR=
LAT 21	ĭ ≸	0.0354740	∥ ∑	0.2415020	ŝ	0.3414160	¥	103.887	932	×P= XP=	570.473	660	ĥ	14.753841	GR∎
LAT 22	Ĩ	0.0398660	H N	0.2293420	ŝ	0.3415833	×	99.504	244	⊪d×	520.286	268	å	11.232732	GR=
LAT 23	Ŧ	0.0172160	×	0.2342620	¶ N	0.3415793	×	102.736	039	۳ ۳	541.765	516	ľ	11.589478	GR∎
LAT 24	Ŧ	0.0144960	H Y	0.2252000	ŝ	0.3397087	¥	108.871	908	₩ E	514.592	228	ĥ	13.764910	6R=
LAT 25	ł	0.0042670	∥ ¥	0.2266550	ľ	0.3397967	×	105.065	110	۳ ۲	516.045	022	ł	13.711048	5R#
LAT 26	¥	0.0410510	ii X	0.2502710	ŝ	0.3440087	×	112.049	498	₩ E	613.134	086	ĥ	16.270822	GR≞
LAT 27	T ¥	0.0317170	1 2	0.2323250	ĥ	0.3397793	×	109.410	365	Ш Ш	541.209	610	8	12.744061	GR ≡
LAT 28	ī ₹	0.0167460	 2	0.2312400	ĥ	0.3402553	×	101.122	475	₩	528.897	976	8	12.616406	6R=
LAT 29	Ĭ	0.0465300	 X	0.2261140	S.	0.3391940	×	100.711	656	= A	509.731	984	ĥ	11.692486	6R=
LAT 30	Ĭ	8.0068330	H X	0.2270630	ŝ	0.3397800	×	110.964	414	٩ ۳	523.425	262	1	12.241286	GR=
LAT 31	¥	0.0382730	H X	0.2247450	۳ ۵	0.3376960	×	102.312	602	۳ ۳	506.395	122	4	14.611659	5R=
LAT 32	1	0.0475370	⊧ ≥	0.2542070	ŝ	0.3428467	×	100.382	207	ШЧ	617.351	798	ľ	13.795692	СR=
	⊺ ' ± :	0.0017660	H S	0.2405880	ı, N	0.3416613	! :	101.110	378	Ę,	564.171	064	<u>ٿ</u>	12.900501	
40 (A)		0.0030090) X :	0.24481/0	" "	0.343262/	# :	961.991	86/	Ť.	588.633	105	ظ	14.828275	5
LA! 35	¥ :	9/54200.0	 Σ	0.235/230	" "	0.3415580	* :	108.049	696	Į,	552.572	228	5	14.470135	5
	± :	8.0074520	 ∑ :	0.2298380	ι, Ν	0.3402893	×	106.734	894	1	529.338	944	8	11.459671	1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	⊺ ¥:	0.0095780	∦ ≱:	0.2363900	ы Ш	0.3401787	! :	94.498	626	₫ II	541.540	796	8	13.412455	- - -
LAT 38	⊺ <u>↓</u> :	0.0225300	1	0.2210240	ŝ	0.3375653	!	103.354	811	Ë.	494.167	680	8	12.974650	
LAT 39	\$:	0.0009450	∥ ≥ :	0.2466430	ι Ν	0.3440880	¥:	96.700	954	Ű,	583.363	110	8	13.392945	
LAT 40	í ¥	8.0502000	N	0.2366260	۳ N	0.3413707	×	105.732	957	l L	553.667	868	8	14.063455	5
LAT 41	Ŧ	0.0248120	¥ ⊋	0.2258940	ς,	0.3408440	!	104.527	417	Ę,	512.752	268	8	11.817144	
LAT 42	ł	0.0417440	ł	0.2266040	"	0.3393280	.	103.064	641		010.808		5	10.072400	
LAT 43	\$	0.0138510	H X	0.2352530	" "	0.041/090		040./01	260		A7. 000		32	11.8000/0	
LAT 44	# :	0.0119640	# * 1	0.230/950	1	0.002800.0		110 767			516 18 ⁶	112	58	14 517491	100
LAT 45	, ∦:	0.0391620	Σ:	0,220200	4 J	0.00595000	 	110.445	000 015		510.100 511 874	205	۶ę	12.709.100	1
LAT 46	₹	0.0187480	= X	0.2324340	11 A	1000040.0	ľ	011.00	2	1 L	r / 0 · 1 0 0	0.00	ļ	~~~~~	ś

1000

LAT 47 N= 0.6	9989739	- N	3.2440050	ۍ ۲	0.3418740	×	93.091318	жР .	569.3988	138 C=	12	.516944	GR=	Ţ	85784
LAT 48 M= 0.6	9870040	 	3.2426860	ĥ	0.3434460	۳X	96.809479	∎d×	567.9814	.36 26	- 12	.178103	GR ≞ SR	۹. T	76262
LAT 49 ME 0.6	9457270	# 	9.2388870	ů ľ	0.3416993	- *:	100.120920	Å.	556.6569	0	12	.530724		7	51987
	0700010	H 2 2	0.2383760	ዘ // (0.3425980	# :	95.285625	÷	549.8/05	5 e	5:	.90/340		4 . 1	605.78
	00/00/00	1 2	0.23/0030	h.,	001014C.0		90/080.06		1105.44C	52	= ÷	9/1//0.			51087
LAT 53 M= 0.6	0310740	E Z	0.2358400	አያ	0.3467327		90 688343		544 6523		4 10	12/211			01208
LAT 54 M= -0.6	9165520	=	3.2375160	۳. ۲	0.3416140		02.624162	₽ďX	553.9349		4	680107	- 20 - 20	ч. Т	24157
LAT 55 M= 0.6	9033870	1	9.2414870	Ϋ	0.3404900	# ×	93.884013	ЧX	560.4117	82	- 14	.944336	68=	4.	43537
LAT 56 M⊨ 0.€	9870730	<u>+</u>	3.2311990	°,	0.3402113	ľ.	01.265161	¶ AX	528.8889	82 G	:	. 991000	GR≞	4	37309
LAT 57 M= 0.6	3424970	H X	3.2380810	ĥ	0.3413160	ř	03.730126	=dX	557.1906	.56 .56	- 14	.273246	GR≞	• .	13908
LAT 58 M= 0.6	9267990	∎ ≥	9.2459770	۳ ۱	0.3418933	Ĭ	02.415334	∦ T	586.4528	10	13	.440079	<u>-</u> - - - - - - - - 	4.	70905
LAI 59 M= 0.6	9657930	H X	0.2307130	ĥ	0.3408100	ř	10.073627	¥P≖	535.9015	G4 0 ₽	- +	.677312	GR≡	г. Т	64311
LAT 50 M -0.6	1756560	1	9.2382820	ŝ	0.3410207	"×	93.147560	₹dX	547.3740	52 C	12	.300062	GR=	1	38487
LAI 61 M= 0.6	334920	 ∑	3.2270960	ĥ	0.3399493	¥	98.100586	×₽∎	510.6813	32		.204285	GR=	4 4	07199
LAT 62 M= -0.6	3207010	<u>ا</u> ۲	0.2250570	ŝ	0.3370800	ľ×	94.834708	₽	500.0399	34	12	.393889	С Н _	4.	27377
LAI 53 MH -0.6	0381700 066400		3.2480560	ں پ ر	0.3420673	¥ ;	10.739259	₩ A X	602.9934	95 95	4:	.359734	88	4 P	71558
	001000		. 2020000	5	101/040.0	l	AICC77.1A		0000-100	2	-	100/18.	120	-	0760/
DATA FROM AVERAG	ING THE 6	4 LATT	ICES :												
	M = 0.00	194073	-	۱ ۲	AFECCAFC D		N+2 -	a dere	7775	2	1 7 4	0 007447	4 F		
		0.0100	-		0.00091810		-/+	0.0004	4161	8	- +	0.000079	510		
				s +	0.34115696 0.00019446		S+2 = +/-	0,1169 0,0001	3744	m	# - # +	0.013938 0.000032	827 215		
×	P = 549.	.38599		∎ _ × +	102.54262 a 66730		# (0 +	13.12	16715 A160		GR =	-1.42267	165 163		
))			-	A				6001		 	56000.0	2		
EFFECTIVE BETA =	0.2216629	9017657													
CORRECTED DATA:															
	M = 0.00	394073	-	# +	0.23554887 0.00091810		M12 = +/-	0.0683 0.0004	4161	Σ	₩ + +	0.000386 0.000079	13		
				1	20200011 Q			0 1160	301	6		000110 0	1.3		
				∥ _ ∩ +	0.0402000		= 710 -/+	0011.00	1900	n	+ +	808010.0	10.1		
											÷	100000.0	2		
×	P = 546.	.77009		∦ ×	102.90392		۳ د	13.14	2999		GR ==	-1.41881	34		
	+/- 3.	.53290		-/+	0.66730		-/+	0.14	4369		-/+	0.00598	163		
TIME SPENT IN TH	E MAIN PAF	RTS OF	THE PROGRA	 X											
	č	- C 00													
THUGHAM ISING	1	20.27	SECONDS												

IN WEASHMI ISING = 288.27 SECONDS IN WEASURING = 266.21 SECONDS Fig. 3. Output IN WEASURING = 27.28 SECONDS Fig. 3. Output SUB. DEMETRO = 15.73 SECONDS those given in SUB. INITRN = 1.91 SECONDS for $(\langle M^2 \rangle - \langle SUB. MEAS = 27.25$ SECONDS for $(\langle M^2 \rangle - \langle SUB. MEAS = 27.25$ SECONDS for exact-nei SUB. NUTRN = 1.01 SECONDS for $(\langle M^2 \rangle - \langle SUB. MEAS = 27.25$ SECONDS for exact-nei SUB. MEAS = 27.25 SECONDS for exact of the nearest-nei RUNNING AT 98.4 MEGAFLIPS CONTECTED USIN

those given in the code.*M* stands for the magnetization per spin $\langle M \rangle / V$, *XP* for $\langle M^2 \rangle / V$, *X* for for $\langle (\langle M^2 \rangle - \langle |M| \rangle^2) / V$, *GR* for the renormalized coupling constant $(M^4 \rangle / \langle M^2 \rangle^2) - 3$, *S* for Fig. 3. Output obtained from running the code shown in Fig. 2. The parameters used are the nearest-neighbor spin-spin correlation function $\langle s_i s_{i+\beta} \rangle$, and C for $dS/d\beta$. The data is corrected using eq. 10.

1001

distribution. The corrected data is shown in Fig. 1(b). Note that each data point is corrected by a different amount because each corresponds to a different stream of random numbers and therefore, a different β_{eff} . In Fig. 1(c) we plot a conventional Metropolis run done by using completely independent sets of random numbers for the 64 lattices. The vertical line corresponds to the exact value. We have repeated this experiment three more times for a total of 160 runs. In 106 and 103 of these runs, $\langle S \rangle$ and $\langle S^2 \rangle$ were within 1 sd of the exact value. This corresponds to 66.25% and 64.37%, respectively, and indicates that the errors are properly defined.

THE CODE

The code is written in standard Cyber Fortran 200 using the special Q8 calls which translate directly into machine code. We use descriptors to point to arrays in the standard way, and the motivated reader is directed to the Fortran 200 manual for inspiration. A listing of the code is included with this paper along with the output (Fig. 2 and 3).³

ACKNOWLEDGMENTS

The work of G.B. and R.S. was supported by the Department of Energy under cooperative agreement number DE-FC05-85ER25000. The work of D.D. was supported both by the previous agreement as well as the DOE grant number DE-AS05-76ER3509.

REFERENCES

- 1. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
- 2. G. O. Williams and M. H. Kalos, J. Stat. Phys. 37:283 (1984).
- 3. R. Zorn, H. J. Herrmann, and C. Rebbi, Comp. Phys. Common. 23:337 (1981), and references therein.
- 4. S. F. Reddaway, D. M. Scott, and K. A. Smith, Comp. Phys. Comm. 37:351 (1985).
- 5. G. Bhanot, D. Duke, and R. Salvador, Phys. Rev. B. 33:7841 (1986).
- 6. M. Creutz, Phys. Rev. Lett. 50:1411 (1983).
- 7. S. Wansleben, J. G. Zabolitzky, and C. Kalle, J. Stat. Phys. 37:271 (1984).

³ Fortran 200 Version 1 Reference Manual (publication number 60485000) CDC Cuber 205 Hardware Reference Manual (publication number 60256020). These manuals are available from: Control Data Corporation, Literature and Distribution Services, 308 North Dale Street, St. Paul, MN 55103.